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ABSTRACT 
This paper presents the application of a decomposition scheme for a problem of inventory control 
of one echelon, one item, uncertain demand and based on a (R, S) replacement policy using two-
stage stochastic programming, as originally proposed by Cunha et al. (2014). We proposed two 
methodologies, one based on L-shaped (Van Slyke & Wets, 1969), and the other, based on multi-
cut L-shaped (Birge & Louveaux, 1988), for accelerating the computational solution process. The 
results showed that both proposed methodologies are capable to satisfactorily improve the 
solution process in terms of computational time. However, despite the fact that the single-cut 
method always required more iterations than the multi-cut version to obtain optimal solutions, the 
single-cut presented better performance in terms of computational time, especially when large 
number of scenarios and periods are considered. 

Keywords: L-shaped method, two-stage stochastic programming, inventory control. 
 
1. INTRODUCTION 

Inventories are important in all types of organizations because they provide means to 
protect the business from uncertainties inherent to the business (such as demand fluctuations, 
unexpected lead times delays, and so forth). However, having inventories profoundly affects 
daily operations, since they must be counted, paid, and used in operations to meet customers and 
administrators’ demands (Krajewski et al., 2009). The key questions that inventory management 
aims to answer, usually subject to a variety of circumstances are: when ordering, how much to 
order and how much to keep as safety stocks (Namit & Chen, 1999; Silva, 2009). 

The major issue with regard to inventory management is to ensure the availability of 
product to the final customer at the lowest cost. In academic literature, there are several proposals 
approaching inventory control policies associated with mathematical models that aim at 
minimization of costs related to stock. These models can be divided into two groups: 
deterministic models, in which it is assumed that all parameters are previously known, and 
probabilistic models, in which one or more parameters, such as demand and lead time, are 
modeled as stochastic. 

Regarding deterministic models for inventory planning, one of the best-known models is 
the EOQ (Economic Order Quantity) model, developed by Harris (1913). This model represents 
the basis for other classic models, such as the EPQ (Economic Production Quantity), in which the 
assumption of instantaneous replenishment is replaced by the assumption that the replenishment 
order is received at constant finite rate over time. According to Pentico & Drake (2009), despite 
the EOQ model being subject to criticism due to its mathematical simplifications, researches have 
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shown that it is widely successful when used in practice. Over the years, new formulations have 
been proposed for deterministic models, with the objective of reducing their simplifications and 
making them more general (see, for example, Pentico & Drake (2009), Montgomery et al. (1973), 
Park (1982) and Pentico et al. (2009)). 

In the context of inventory management, it is well known that optimal policies can be 
obtained by using dynamic programming through the Wagner-Whitin algorithm whenever the 
demand is considered deterministic (Axsater, 2006). However, the simplifying considerations 
adopted in deterministic models, especially the assumption of prior knowledge of demand 
behavior, do not represent the practical reality, which ultimately motivates the development of 
inventory management models that are capable to take uncertainty into consideration. 

Among the classical systems of inventory control in inventory management literature, 
which are used when considering the uncertainty in demand, we mention the following: (R, Q), 
(R, S), (R, s, S), (s, S) e (s, Q). In these systems R, Q, s and S means periodic review periods, 
reorder quantities, reorder points, and inventory level targets, respectively. In systems (R, Q), (R, 
S), and (R, s, S), in every R units of time (periodic review), a fixed quantity Q of the item is 
ordered in the first, while in the others, a sufficient variable amount to raise inventory position to 
level S is requested in each inventory review, and the third an order is performed only if the stock 
position is less than or equal to s. The systems (s, S) and (S, Q) assume continuous review, where 
a quantity is ordered when the position of stock is less than or equal to the reorder points, being 
that in the (s, S) a variable quantity is ordered, sufficiently to raise the stock level position to 
target level S while in the second, a fixed amount Q is ordered. 

In real applications, it is more frequent that stocks are checked periodically rather than in 
a continuous fashion (Fattahi et al., 2014). This is due to the advantages obtained in periodic 
review. The periodic review easily reveals the amount of work involved and generally is cheaper 
than continuous review, which requires a real-time information system. According to Hadley & 
Whitin (1963) the periodical review in the inventory replenishment policy is widely used because 
it requires less transactional effort, allowing ease of planning for calculating workload 
requirements, facilitates attending both customers and suppliers needs, allowing a better 
replacement coordination, especially when you have multiple items, and generates greater 
stability to the system. 

Several models considering uncertain demand were proposed by Hadley & Whitin (1963) 
and Silver & Peterson (1998), and, in a most of them, cost parameters were considered fixed 
throughout the planning horizon. The stochastic demands were approximated to known 
probability distribution models, (both discrete or continuous distribution models, depending on 
the size of the problem in terms of demand and ordering quantities). In the model proposed by 
Hadley & Whitin (1963), for example, the main constraint is that the demand for each period is 
time-wise independent and normally distributed, which is a strong hypothesis, given that in the 
real-world demand, and other parameters, may depend on factors such as the uncertain market 
conditions, cost and the time of the year (seasonality). 

One way to relax the hypothesis of having to model demand stochastic behavior in a 
rather simplistic fashion is to use two-stage stochastic optimization models (Shapiro & Philpott, 
2007). This model is compatible with the aforementioned inventory policies, since it can be used 
to model control variables R, S, and Q in each system as first-stage variables, which are those 
that represent decisions that should be made prior to knowing how the uncertainty unveils. The 
remaining variables, so-called second-stage or recourse variables, which are linked to control 
decisions, are determined after knowing how the uncertainty unveils. One of the main advantages 
of the two-stage stochastic programming framework is that the stochastic parameters can be 
modeled without assuming any restrictive hypothesis on the stochastic phenomenon, provided 
that their behavior can be approximated by a discrete set of possible scenarios associated with 
their respective probabilities, which allows a closer representation of the real demand behavior of 
a particular item. 

The use of two-stage stochastic programming for inventory control can be seen, for 
example, in Fattahi et al. (2014), where they model a two-echelon network based on the 
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continuous review policy (s, S), considering a single item and the demand parameter as uncertain.  
Cunha et al. (2014) modeled a one-echelon network, considering a single item and the demand as 
uncertain parameter. In this case, it was adopted the periodic review policy (R, S). 
  The model developed by Cunha et al. (2014) was based on mixed-integer nonlinear 
programming (MINLP), further linearized into a mixed-integer linear program (MILP) through 
exact reformulations, at the cost of increasing the number of variables and constraints in the 
model. The increase of variables and constraints added to the fact that the aforementioned 
problem is a MILP makes it challenging to solve its deterministic equivalent version due to 
computational the computational burden.  

In Cunha et al. (2014), the results were compared with those of the model of Hadley & 
Whitin (1963) and it was observed that increasing the number of periods and scenarios would 
lead to a reduction in the absolute percentage error of the minimum cost. Thus, for best results, it 
is made necessary to perform simulations considering large numbers of scenarios and periods, 
which makes the computational performance of full-space deterministic equivalent problem 
intractable. Hence, it becomes necessary to use a method to accelerate the computational solution 
process, in particular effective methods for solving large-scale problems based on decomposition. 

Slyke & Wets (1969) presented the first work using Benders decomposition (Benders, 
1962) in two-stage stochastic programming, which is often referred as the L-shaped method. 
Exploiting the two-stage stochastic problem structure, Birge & Louveaux (1988) extended the L-
shaped method to a multi-cut version (multi-cut L-shaped). The computational efficiency of these 
methods is widely proved in literature, especially in the context of two-stage stochastic 
optimization problems (see Castro et al. (2009), Khodr et al. (2009), Alysson et al. (2012), 
Bertsimas et al. (2013), and Oliveira et al. (2014), for example)  

In this context, this paper aims at developing a solution approach based on Benders 
decomposition for the model proposed in Cunha et al. (2014) when considering large-scale 
problems (i.e., with a large number of scenarios). Moreover, we compare the performance of two 
different versions of the algorithm, namely the traditional L-shaped method the multi-cut version 
presented by Birge and Louveaux (1998) for this specific problem. 

The paper is organized as follows: Section 2 describes the proposed mathematical model 
in Cunha et al. (2014). Section 3 presents an algorithm based in traditional L-shaped 
decomposition, while Section 4 presents the multi-cut framework. Section 5 describes how the 
computational experiments were performed and reports the numerical results obtained. Section 6 
draws some conclusion and future works. 

 
2. MATHEMATICAL MODEL 

The following notation is used to present the mathematical model proposed by Cunha et 
al. (2014). For the sake of notation simplicity, the domains of summations will be omitted, except 
when the summation is evaluated only in a subset of the natural domain. When there is no 
mention of this fact, its domain should be considered as original set to which the index refers. 

Sets 
𝑃 − Time periods 
Ω − Scenarios 
τ − Review periods 
 
Indexes 
𝑝 ∈ 𝑃 − Time period 
𝜉 ∈ Ω − Scenario 
𝑟 ∈ τ − Review period 

 
Parameters 
𝐵!         − Stock-out cost per unit of item in the period 𝑝 
𝐶𝐹! − Fixed cost of ordering in the period 𝑝 
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𝐷 𝜉 !      − Demand for the item in scenario 𝜉 and period 𝑝 
𝐻!         − Inventory cost per unit of item in the period 𝑝 
𝐼𝑇𝐼         − Upper bound limit for the total position of the item inventory 
  𝑆 − Upper bound for the maximum level of the item inventory 
𝑃𝑟(𝜉) − Probability of scenario 𝜉 
𝑊!! − Auxiliary parameter that indicates the period in which an ordering occurs 

depending on the value  𝑟;   𝑤!! ∈ 0,1 ;   𝑟 = 1,… ,𝑁𝑅;       𝑝 = 1,… ,𝑁𝑃 
 

Variables 
𝑎(𝜉)! − Amount of met demand in scenario 𝜉 and period 𝑝 
𝑓(𝜉)! − Amount of unmet demand in scenario 𝜉 and period 𝑝 
𝑖(𝜉)! − On-hand inventory in scenario 𝜉 and period  𝑝 
𝑖𝑡(𝜉)! − Position of total inventory (on-hand inventory plus pending ordering) in         

scenario 𝜉 and at the end of period 𝑝 
𝑖𝑡𝑖(𝜉)! − Position of total inventory (on-hand inventory plus pending ordering) in scenario 𝜉 

and at the beginning of the period 𝑝 
𝑖𝑡𝑖𝑣(𝜉)! − Auxiliary variable for position of total inventory (on-hand inventory plus pending 

ordering) in scenario 𝜉 and at the beginning of the period 𝑝 
𝑞(𝜉)! − Order quantity of the item in scenario 𝜉 and period 𝑝 
𝑠 − Order-up-to levels of the inventory item over the time horizon (S) 
𝑠𝑣! − Auxiliary variable for order-up-to levels of the inventory item in period 𝑝 
𝑣! − Indicates whether an order of the item in period  𝑝 exist or not;  𝑣! ∈ {0,1} 
𝑢! − Auxiliary variable in determining the size of cycle  𝑅;  𝑢! ∈ 0,1 . 
 
The complete deterministic equivalent formulation of the two-stage stochastic model presented 
by Cunha et al. (2014) can be stated as follows: 

min
!,!,!,!",!"!,!"!#,!,!,!",!,!

𝐶𝐹!
!

𝑣! + 𝑃𝑟 𝜉   [𝐻!

!,!  

𝑖(𝜉)! + 𝐵!𝑓(𝜉)!]    (1) 

Subject to: 

𝑢!
!

= 1  (2) 

𝑊!!
!

𝑢! = 𝑣! ∀𝑝 (3) 

0 ≤ 𝑠 ≤      𝑆  (4) 
  𝑖(𝜉)!!! + 𝑞(𝜉)!!!" = 𝑖 𝜉 ! + 𝑎(𝜉)! ∀𝑝 (5) 
𝑖𝑡(𝜉)!!! + 𝑞(𝜉)! = 𝑖𝑡 𝜉 ! + 𝑎(𝜉)! ∀𝑝 (6) 
𝑎 𝜉 ! + 𝑓(𝜉)! =   𝐷(𝜉)! ∀𝑝 (7) 
𝑞 𝜉 ! =   𝑠𝑣! − 𝑖𝑡𝑖𝑣(𝜉)! ∀𝑝 (8) 
𝑠𝑣! ≤ 𝑆𝑣! ∀𝑝 (9) 
𝑠𝑣! ≤ 𝑠 ∀𝑝 (10) 
𝑠𝑣! ≥ 𝑠 −   𝑆(1 − 𝑣!) ∀𝑝 (11) 
𝑖𝑡𝑖𝑣(𝜉)! ≤    𝐼𝑇𝐼𝑣! ∀𝑝 (12) 
𝑖𝑡𝑖𝑣(𝜉)! ≤   𝑖𝑡𝑖(𝜉)! ∀𝑝 (13) 
𝑖𝑡𝑖𝑣(𝜉)! ≥   𝑖𝑡𝑖(𝜉)! − 𝐼𝑇𝐼(1 − 𝑣!) ∀𝑝 (14) 
𝑖𝑡𝑖(𝜉)! = 𝑖𝑡(𝜉)!!! ∀𝑝 (15) 
𝑢! ∈ 0,1  ∀𝑟 (16) 
𝑣! ∈ 0,1  ∀𝑝 (17) 
𝑠𝑣! ≥ 0 ∀𝑝 (18) 
𝑎 𝜉 !, 𝑖 𝜉 !, 𝑖𝑡 𝜉 !, 𝑖𝑡𝑖(𝜉)!, 𝑖𝑡𝑖𝑣(𝜉)!, 𝑞(𝜉)! ≥ 0 ∀𝑝 (19) 
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Expression (1) models the total cost that one seeks to minimize. The first term refers to 
costs of ordering over the planning horizon considered. The second term refers to inventory costs 
and stock-out costs over the planning horizon. Constraint (2) indicates that there is exactly one 
value that determines the size of cycle  𝑅 (𝑅 = 𝑟, when  𝑢! = 1). Constraint (3) indicates that 
orders depend on the choice of R and that the first order always occurs in the first period of the 
planning horizon (according to the definition of values 𝑤!!). Constraint (4) determines the lower 
and upper bounds for the order-up-to level variable. Constraint (5) represents the balance of 
stocks in hand from one period to the next, in each scenario. Constraint (6) represents the balance 
of the position of total inventory (on-hand plus orders in transit) of an item from one period to the 
next, in each scenario 𝜉. Constraint (7) represents the met and unmet demand in each period, for 
each scenario 𝜉. The Constraints (8)-(15) represent the exact linearization of the following 
equation: 

 
𝑞 𝜉 ! = 𝑠 − 𝑖𝑡(𝜉)!!!   𝑣! ∀𝑝 (20) 

 
Constraint (20) represents the amount that must be ordered in every R periods over the 

planning horizon for each scenario 𝜉. It is a nonlinear constraint, which makes the model a 
MINLP problem, but the exact linearization of this equation allows the proposed model to be 
stated as a mixed-integer linear programming (MILP) problem, which is more amenable in terms 
of computational complexity. At last, (16)-(19) present domains of the decision variables. 

 
3. STOCHASTIC BENDERS DECOMPOSITION (L-SHAPED METHOD) 

The model proposed in the previous section can be defined as an optimization model with 
binary and continuous first-stage variables, composed by equations (2-4), (9-11), (16-18) and the 
first term of objective function, and continuous second-stage variables, composed by equations 
(5-8), (12-15), (19) and the second term of objective function. Moreover, the model has relatively 
complete recourse (Birge & Louveaux, 1997) that is, for any feasible first stage solution, the 
second stage problem is feasible. This occurs, because every time that some part of the demand is 
not fulfilled, a penalty is imposed without precluding the existence of an optimal solution for the 
second-stage problem. Such characteristics allow us to develop a decomposition framework 
based on Benders decomposition (Benders, 1962) applied to stochastic optimization. The 
stochastic two-stage structure allows modeling the master problem from the first-stage problem 
and the slave problem from the second-stage problem. 

We start by stating the slave problem, which is the dual representation of the second-
stage problem, where the complicate variables 𝑠𝑣! and 𝑣! are considered as fixed parameters 
𝑠𝑣! and 𝑣!, and 𝛼, 𝛽, 𝛾, 𝜎, 𝜋, 𝜇, 𝜌, 𝜔  are the dual variables associated with constraints (5) to 
(8) and (12) to (15), respectively The slave problem can, thus, be stated as follows: 
 
𝑄 𝑣, 𝑠𝑣 = 

= max
!,!,!,!,!,!,!,!  

𝑃𝑟(𝜉)[𝐷 𝜉 !

!,!  

𝛾 𝜉 ! + 𝐼𝑇𝐼𝑣!𝜋 𝜉 ! + 𝐼𝑇𝐼  (𝑣!−1)𝜌 𝜉 !

+ 𝑠𝑣!𝜎 𝜉 !] 

(21) 

Subject to: 
𝛽(𝜉)!!! − 𝛽(𝜉)! −   𝜔(𝜉)!!! ≤ 0 ∀𝑝 (22) 
𝛼(𝜉)!!! − 𝛼(𝜉)! ≤ 𝐻! ∀𝑝 (23) 
−  𝛼(𝜉)! − 𝛽(𝜉)! +   𝛾(𝜉)! ≤ 0 ∀𝑝 (24) 
𝛼(𝜉)!!!" + 𝛽(𝜉)! +   𝜎(𝜉)! ≤ 0 ∀𝑝 (25) 
𝛾(𝜉)! ≤ 𝐵! ∀𝑝 (26) 
  𝜎(𝜉)! + 𝜋(𝜉)! +   𝜇 𝜉 ! +   𝜌(𝜉)! ≤ 0 ∀𝑝 (27) 
  𝜇(𝜉)! + 𝜌(𝜉)! +   𝜔 𝜉 ! ≤ 0 ∀𝑝 (28) 
𝛼 𝜉 !,𝛽 𝜉 !, 𝛾 𝜉 !,𝜎(𝜉)!,𝜔(𝜉)!       ∈ ℝ!×!    ∀𝑝 (29) 
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𝜌 𝜉 ! ≥ 0 ∀𝑝 (30) 
𝜋 𝜉 !, 𝜇 𝜉 ! ≤ 0 ∀𝑝 (31) 
 

The slave problem is easier to solve in comparison to the original problem because it has 
less variables and constraints and it is continuous. Notice that it also can be decomposed and 
solved for each scenario independently, which might leads to improved solution times, especially 
when the number of scenarios is large. 
 
The formulation of the master problem is given by: 
 

min
!,!,!,!"

𝐶𝐹!
!

𝑣! +𝑚  (32) 

Subject to: 

𝑢!
!

= 1 ∀𝑝 (33) 

𝑊!!
!

𝑢! = 𝑣!  (34) 

0 ≤ 𝑠 ≤      𝑆 ∀𝑝 (35) 
𝑠𝑣! ≤ 𝑆𝑣! ∀𝑝 (36) 
𝑠𝑣! ≤ 𝑠 ∀𝑝 (37) 
𝑠𝑣! ≥ 𝑠 −   𝑆(1 − 𝑣!)  (38) 
𝑚 ≥ 𝑄(𝑣, 𝑠𝑣)	
   (39) 

𝑢! ∈ 0,1  ∀𝑟 (40) 
𝑣! ∈ 0,1  ∀𝑝 (41) 
𝑠𝑣!,𝑚 ≥ 0 ∀𝑝 (42) 
	
     

Inequality (39) is not a constraint defined explicitly, but only implicitly, by a number of 
optimization problems. The main idea of L-shaped method (Slyke & Wets, 1969) is to relax 
constraint (39) and replace it by a number of cuts, which may be gradually added following an 
iterative solving process. These cuts, defined as supporting hyperplanes of the second-stage 
objective function, eventually provides a good estimation for the value of 𝑄(𝑣, 𝑠𝑣) in a finite 
number of iterations. In other words, it is important to observe that there is one constraint (39) for 
each extreme point of slave problem in the complete master problem. It is true that there may be 
an enormous number in a problem of even a moderate size. However, it is expected that only a 
small fraction of the constraints will be binding in the optimal solution. 

Initially, the master problem is solved, providing initial 𝑠𝑣!  and 𝑣! and a convergence 
check is made (because of the definition of initial upper bound, the algorithm never stop in the 
first test). Next the slave problem is solved for 𝛼, 𝛽, 𝛾, 𝜎, 𝜋, 𝜇, 𝜌,𝜔 given initial 𝑠𝑣!  and 𝑣! 
determined by the master in initialization and the upper bound is updated. Then, a constraint (cut) 
involving 𝛼,𝛽, 𝛾,𝜎,𝜋, 𝜇, 𝜌,𝜔 must be added to the master, which will provide new lower bound 
and 𝑠𝑣! and 𝑣! solutions. If the convergence criterion is not satisfied, the slave is solved with the 
current 𝑠𝑣! and 𝑣! solutions and the loop starts again. This process continues until optimality 
(within a tolerance level 𝜖) can be obtained. The proposed methodology is shown in Figure 1.  
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Figure 1 - Flowchart of L-shaped method for proposed methodology 

4. MULTICUT STOCHASTIC BENDERS DECOMPOSITION 
The structure of stochastic programs allows one to add multiple cuts to the master 

problem instead of one in each major iteration. Birge & Louveaux (1988) show that the use of 
such a framework may greatly speed up convergence. The main idea, is that in this case, instead 
of generating a single cut at each interaction, one can add multiple cuts to the master problem, 
equal to the number of scenarios considered and, therefore, fewer iterations might be necessary to 
achieve the optimal solution. Birge & Louveaux (1988) showed that the maximum number of 
iterations for the multi-cut procedure is given by 

1 + |Ω|  (𝑞! − 1),  (43) 

while the maximum number of iterations for the single-cut procedure is given by 

[1 + Ω 𝑞! − 1 ]!,  (44) 

where m represents the number of recourse constrains, Ω  the number of the different 
realizations of 𝜉 and q represents the total of slopes for the second-stage problem. Although q 
might turn out to be complicated to calculate for real-world problems, (43) show that the 
maximum number of iterations, for multi-cut algorithm, needed for reaching the optimum grows 
linearly with the number of scenarios, while (44) shows that it grows exponentially for the 
traditional single-cut algorithm. 

The main difference between the multi-cut L-shaped algorithms and its traditional 
version is the formulation of the master problem, which must be conveniently adequate to the 
multi-cut framework, as follows. The flowchart of multi-cut L-shaped method for proposed 
methodology is shown in Figure 2.  
 
min
!,!",!,!

𝐶𝐹!
!

𝑣! + 𝑃𝑟  (𝜉)𝑚(𝜉)
!

    (45) 

Subject to: 

(33) to (38), (40) to (42) 

𝑚 𝜉 ≥ [𝐷 𝜉 !

!  

𝛾 𝜉 ! − 𝐼𝑇𝐼  ρ 𝜉 ! + 𝐼𝑇𝐼(π 𝜉 ! +ρ 𝜉 !)𝑣! + 𝑠𝑣!𝜎 𝜉 !]      ∀𝜉               (46) 
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The framework of slave problem may be conveniently adequate too, as follows.  

max
!,!,!,!,!,!,!,!

[𝐷 𝜉 !

!,!  

𝛾 𝜉 ! + 𝐼𝑇𝐼𝑣!π 𝜉 ! + 𝐼𝑇𝐼  (𝑣!−1)ρ 𝜉 ! + 𝑠𝑣!  𝜎 𝜉 !]	
   (47) 

Subject to: 

(22) to (31) 
 

5. COMPUTATIONAL RESULTS AND ANALYSIS	
  
In this section, we present the numerical experiments we performed using the single-cut 

and multi-cut approaches in the MILP model for inventory control (R, S) proposed for Cunha et 
al. (2014) in order to analyze their performances. The proposed methodologies were implemented 
using AIMMS 3.14. The LP slave problems was successively solved within the decomposition 
framework using CPLEX 12.5. All experiments were performed on an Intel processor core I7 2.0 
GHz with 8 Gb RAM. Demand scenarios were randomly generated, for each combination of 
scenarios, periods and periodicities, following a normal distribution with average 𝜇 = 50 and 
variance 𝜎! = 75. The tolerance level 𝜖 was set to 0.00001 in all cases, which, in practice, 
provides exact values for variables 𝑅 and 𝑆. 

	
  

Figure 2 - Flowchart of multi-cut L-shaped method for proposed methodology 
 

Four different instances were considered in our experiments, in which each costs was 
independently and separately increased by 50% in respect to Instance 1, as can be seen in the 
Tables 1 to 4. For each instance, experiments were performed considering 10 and 20 
periodicities, 36 and 72 periods and 50, 100, 250 and 500 scenarios. All presented results are 
from a single sample (for each sample size). For each combination of scenario, period, 
periodicities and instance considered, Tables 1 and 2 provide solution times, in seconds, for full-
space version of problem (CPLEX), single-cut (SCut) and multi-cut (MCut) methods, while 
Tables 3 and 4 show the total number of iterations required for the algorithms based on the 
single-cut and multi-cut methods to reach the optimum solution within the defined tolerance 
level. 
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Table 1 - Solution times[s] for instances 1 and 2. 

Scenarios Periods Periodicities 
Instance 1 Instance 2 

𝐵!=25;  𝐶𝐹!=25;  𝐻!=0.2 𝐵!=25;   𝐶𝐹!=37.5;  𝐻!=0.2 
CPLEX SCut MCut CPLEX SCut MCut 

50 
36 

10 11.36 4.65 8.70 11.50 4.15 8.71 
20 11.56 5.18 9.22 12.20 5.46 9.66 

72 
10 48.21 9.63 21.86 48.69 9.68 20.61 
20 50.56 10.75 22.49 51.17 10.12 22.49 

100 
36 

10 31.44 7.38 22.01 33.43 8.15 21.67 
20 43.31 9.95 23.41 41.32 10.83 21.51 

72 
10 186.22 15.16 41.35 202.59 17.00 41.12 
20 221.00 19.08 72.88 219.06 16.55 69.32 

250 
36 

10 233.63 21.29 57.34 241.07 19.59 58.60 
20 278.67 24.61 69.22 282.89 22.56 70.29 

72 
10 1449,65 35.25 176.90 1456.32 37.10 175.39 
20 1501.74 36.45 201.58 1553.41 35.45 193.82 

500 
36 

10 1059.29 36.35 204.43 1072.23 36.59 200.50 
20 1196.75 38.96 189.50 1227.53 53.33 170.40 

72 
10 5309.28 66.72 459.37 5290.30 71.93 452.19 
20 6490.64 66.52 540.73 6490.80 70.72 538.64 

Table 2 - Solution times[s] for instances 3 and 4. 

Scenarios Periods Periodicities 
Instance 3 Instance 4 

𝐵!=37.5;  𝐶𝐹!=25;  𝐻!=0.2 𝐵!=25;  𝐶𝐹!=25;  𝐻!=0.3 
CPLEX SCut MCut CPLEX SCut MCut 

50 
36 

10 11.92 5.20 10.45 9.42 4.60 10.68 
20 14.98 6.46 10.28 11.82 4.42 9.55 

72 
10 54.22 10.83 32.06 43.59 7.19 15.37 
20 62.51 10.78 31.27 47.67 9.52 25.84 

100 
36 

10 38.10 9.23 19.13 30.02 6.52 22.12 
20 48.96 10.48 28.32 32.40 9.13 25.61 

72 
10 254.27 18.99 57.95 162.20 13.77 42.71 
20 274.34 21.17 78.52 182.86 17.76 50.75 

250 
36 

10 325.47 21.14 49.56 209.32 17.61 63.43 
20 367.32 24.74 83.11 182.64 18.90 77.18 

72 
10 1923.53 37.79 191.03 1071.18 29.38 146.80 
20 2424.57 42.46 246.66 1030.86 32.29 202.18 

500 
36 

10 1367.57 46.96 110.05 887.05 34.70 189.48 
20 1986.46 52.42 221.76 1086.28 43.44 225.64 

72 
10 7496.49 67.63 458.74 3920.60 62.41 375.77 
20 12075.14 74.68 467.23 4003.32 68.54 580.73 

 
Table 3 - Total number of iterations for instances 1 and 2. 

Scenarios Periods Periodicities 
Instance 1 Instance 2 

𝐵!=25;  𝐶𝐹!=25;  𝐻!=0.2 𝐵!=25;  𝐶𝐹!=37.5;  𝐻!=0.3 
SCut MCut SCut MCut 

50 
36 

10 32 20 30 20 
20 32 22 32 22 

72 
10 30 22 30 22 
20 32 23 32 23 

100 
36 

10 30 22 32 22 
20 35 23 35 23 

72 
10 33 22 32 22 
20 34 26 33 26 

250 
36 

10 32 22 32 22 
20 37 23 34 23 

72 
10 34 24 34 24 
20 35 26 34 26 

500 
36 

10 33 24 33 24 
20 34 23 36 22 

72 
10 35 24 35 24 
20 35 26 36 26 
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Table 4 - Total number of iterations for instances 3 and 4. 

Scenarios Periods Periodicities 
Instance 3 Instance 4 

𝐵!=37.5;  𝐶𝐹!=25;  𝐻!=0.2 𝐵!=25;  𝐶𝐹!=25;  𝐻!=0.3 
SCut MCut SCut MCut 

50 
36 

10 35 23 29 22 
20 36 23 29 22 

72 
10 34 24 29 19 
20 34 27 31 22 

100 
36 

10 36 20 27 21 
20 36 25 32 24 

72 
10 37 24 31 21 
20 37 27 32 23 

250 
36 

10 38 21 29 22 
20 38 25 32 24 

72 
10 38 25 30 23 
20 39 28 32 25 

500 
36 

10 38 20 31 22 
20 37 24 35 24 

72 
10 36 23 33 23 
20 39 25 35 27 

 
Analyzing Tables 1 and 2, we notice that both the L-shaped (Slyke & Wets, 1969) and 

multi-cut L-shaped (Birge & Louveaux, 1988) methods were capable of improving the 
performance in terms of computational time when compared with the direct solution of the full-
space version of the problem, especially when the number of scenarios and periods increase. 
Considering the case with larger scales (500 scenarios, 72 times and 20 periodicities), the full-
space model presented an average solution time of 7265 seconds, while the proposed L-shaped 
and multi-cut L-shaped methods presented average computational times of 70 and 532 seconds, 
respectively.  

As can be seen in Tables 3 and 4, the multi-cut version, in all cases, took less iterations 
than the single-cut version to reach the optimal solution. However, the single-cut approach 
always presented shorter solution times, as shown in the Tables 1 and 2. This occurs due to the 
fact that in multi-cut approach, more time is spent solving the master problem in each iteration. 
This is related with the fact that in the single-cut version, a single cut is added in the master 
problem in each iteration, while in the multi-cut version, the total of cuts added in each iterations 
is equal to the number of scenarios, significantly increasing the size, and therefore, their solution 
time. This can be verified, for example, when examining Tables 1, 2, 3 and 4 together. It seems 
that, when we increase the total of scenarios, periods or periodicities in each instance, the number 
of iterations required in both methods generally increases, but with little variation. Thus, 
increasing the amount of scenarios or periods causes a smaller impact in the computational time 
for the single-cut method when compared to the multi-cut version. This can also be seen in 
Figures 3, 4 and 5, where some data from previous tables were used to compare the performances 
of the proposed methodologies in terms of solution time, total quantity of iterations, and solution 
time per total of iterations, respectively. Table 1 also shows that the solution time for both 
methods is not relevantly affected by the variation of the number of periodicities and the set 
costs, when compared to the variation the total of periods or scenarios. 
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Figure 3 - Comparison of computational times (20 periodicities and Instance 1). 

	
  

 
Figure 4 - Comparison of number of iterations (20 periodicities and Instance 1). 

 

	
  
Figure 5 - Comparison of time solution/number of iterations (20 periodicities and Instance 1).	
  

 
6. CONCLUSIONS 

In this paper, we proposed two approaches based on single-cut and multi-cut L-shaped 
methods for solving the optimal (R, S) inventory replenishment policy problem with periodic 
review by using a two-stage stochastic programming model, as proposed by Cunha et al. (2014).  

The results showed that the proposed methodology was capable of improving the solution 
process in terms of computational time in a satisfactory manner. However, despite the single-cut 
version always required more iterations than the multi-cut version to obtain optimal solutions, the 
single-cut presented better performance in terms of solution time, especially larger numbers of 
scenarios and periods. Considering the case with larger scales (500 scenarios, 72 times and 20 
periodicities), the single-cut algorithm performed 103.8 and 7.6 times faster on average than 
solving the full space equivalent deterministic problem and multi-cut algorithm, respectively. 
This suggests that the theoretical bounds for the maximum number of required iterations to reach 
complete convergence do not guarantee that the multi-cut L-shaped method will always have a 
faster computational solution times than the classical L-shaped method in this case.  
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The results support the conclusion that more complex formulations considering, for 
example, more items and more layers, for system (R, S), could be efficiently approached using 
the proposed methodology. 

As for future research, we are currently investigating methods that blends single-cut and 
multi-cut versions for the case studied (less time solution with less interaction) and how to make 
improvements in the current model of Cunha et al. (2014) in order to be able to consider initial 
stock and partial backorder. 
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