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ABSTRACT
In this work we propose a continuous approach for solving one of the most studied

problems in combinatorial optimization, known as the 0–1 knapsack problem. In the continuous
space, the problem is reformulated as a convex generalized multiplicative problem, a special class
of nonconvex problems which involves the minimization of a finite sum of products of convex
functions over a nonempty convex set. The product of any two convex positive functions is not
necessarily convex or quasiconvex, and, therefore, the continuous problem may have local optimal
solutions that are not global optimal solutions. In the outcome space, this problem can be solved
efficiently by an algorithm which combines a relaxation technique with the procedure branch–and–
bound. Some computational experiences are reported.

KEYWORDS. Knapsack Problem, Combinatorial Optimization, Global Optimization, Mul-
tiplicative Programming, Convex Analysis.

Main Area: Combinatorial Optimization

RESUMO
Neste trabalho propomos uma abordagem contı́nua para resolver um dos problemas

mais estudados de otimização combinatória, conhecido como problema de mochila 0–1. No espaço
contı́nuo, o problema é reformulado como um problema multiplicativo generalizado convexo, uma
classe especial de problemas não–convexos que envolve a minimização de uma soma finita de
produto de funções convexas sobre um conjunto convexo, compacto e não vazio. O produto de
quaisquer duas funções convexas positivas não é necessariamente convexa ou quase–convexa, e,
portanto, o problema contı́nuo pode ter soluções ótimas locais que não são soluções ótimas globais.
No espaço dos objetivos, este problema pode ser eficientemente resolvido por um algoritmo que
combina relaxação com uma técnica de branch–and–bound. Algumas experiências computacionais
são relatadas.

PALAVRAS CHAVE. Problema de Mochila, Otimização Combinatória, Otimização Global,
Programação Multiplicativa, Análise Convexa.

Área Principal: Otimização Combinatória



1. Introduction

A famous class of combinatorial optimization problems is known as the knapsack prob-
lem. In particular, this class of combinatorial optimization problems, characterizes a class of integer
linear programming and are classified as NP–hard problems due to their complexity degree (Zhang
and Geng, 1986 and Kellerere et al., 2004). Consider the situation where a mountaineer who is
packing his knapsack for a mountain tour and has to decide which items he should take with him,
among several items available and considering the limited knapsack capacity. The items have dif-
ferent weights and each of them would give the mountaineer a certain amount of comfort/benefit
which is measured by positive value, known as utility. For obvious reasons, the goal is to maximize
the total utility of the items taken without exceeding the prescribed knapsack capacity.

Given p items x1, x2, . . . , xp, each xi with weight (cost) wi ∈ R and utility (value)
ui ∈ R, and a knapsack capacity (budget) C ∈ R. Then, the problem of maximizing the total utility
of the items taken without exceeding the prescribed limit C can be formulated as∣∣∣∣∣∣∣∣∣∣

maximize
p∑
i=1

uixi

subject to
p∑
i=1

wixi ≤ C.
(1.1)

In the unbounded knapsack problem, there is no upper bound on the number of copies of
each item which the mountaineer can take with him, but, naturally, there is a limited supply of each
item. In other words, let the integer value ci be the upper bound on the number of copies of item xi
(i = 1, 2, . . . , n). In this case, the knapsack problem is bounded and can be formulated as∣∣∣∣∣∣∣∣∣∣∣∣

maximize
p∑
i=1

uixi

subject to
p∑
i=1

wixi ≤ C

xi ∈ {0, 1, 2 . . . , ci}, i = 1, 2, . . . , p.

(1.2)

In particular, when each item is unique (ci = 1, i = 1, 2, . . . , p), the bounded knapsack
problem may be reformulated as follows and is known as the 0–1 knapsack problem∣∣∣∣∣∣∣∣∣∣∣∣

maximize
p∑
i=1

uixi

subject to
p∑
i=1

wixi ≤ C

xi ∈ {0, 1}, i = 1, 2, . . . , p.

(1.3)

The class of knapsack problems is very wide and includes many subproblems, and, there
is no text in the literature of combinatorial optimization that covers and fully treats it. However,
there is a great number of books and research texts that cover several classic problems of the family,
treat some more specific generalizations of the problems, or give a profound introduction (see e.g.,
Ibraki 1987, Pisinger 1995, Dudzinski and Walukiewicz 1987, Martello and Toth 1990 and Syslo et
al. 1983).

Several important problems arising in Operations Research, Mathematical Programming,
Engineering, Economics, Packing and Planning are modeled in a convenient way by the knapsack
problems of the form (1.2)–(1.3) (Pisinger, 1995). For example, suppose that one must allocate a



single scarce recourse among multiple contenders for this resource while obtaining some sort of
profit from an optimal configuration. Another interesting applications appear in, for example, the
diet problem (Sinha and Zoltners, 1979), Bin–packing problem (Sinuary–Stern and Winer, 1994),
cargo loading, project selection, cutting stock, budget control, financial management (see Salkin
and Kluyver, 1975 for a detailed discussion).

The literature in the knapsack problems has been dominated by the the analysis of problem
with binary variables, the 0–1 knapsack problem, since the pioneering work of Dantzing in the late
50’s (Dantzing, 1957). Since then, a number of different approaches for solving the knapsack
problems have been proposed. The 0–1 knapsack problem has attracted special interest.

As knapsack problems (in particular 0–1 knapsack problem) are classified as NP–hard
problems due to their complexity degree, there is no exact solution methods other than the enu-
meration space approaches. However, a wide variety of inexact approaches, including branch–and–
bound, dynamic programming, state space relaxation and preprocessing, have been proposed in the
literature of integer programming for solving knapsack problems (see Ibraki, 1987).

The principal objective of this paper is to introduce a continuous optimization technique
for solving the 0–1 knapsack problem, one of the classic problems of combinatorial optimization.
The 0–1 knapsack problem, is perhaps, the most important knapsack problem and one of the most
studied problems of discrete optimization, once it can be seen as the most simple problem of integer
linear programming, it appears as a sub–problem in many other complex problems and it represents
a very wide range of practical situations. In the continuous space, the problem is reformulated as a
convex generalized multiplicative problem, a special class of nonconvex problems which involves
the minimization of a finite sum of products of concave functions over a nonempty convex set. In
the outcome space, a branch–and–bound algorithm is proposed for solving such problem.

The paper is organized in six sections, as follows. In Section 2, the 0–1 knapsack problem
is reformulated in the continuous space as an equivalent convex generalized multiplicative pro-
gramming problem. In Section 3, the equivalent problem is reformulated in the outcome space,
and an outer approximation approach is outlined. In Sections 4, the relaxation branch–and–bound
algorithm is derived. Some computational experiences with the method described in Section 4 are
reported in Section 5. Conclusions are presented in Section 6.

Notation. Throughout this paper, the set of all n-dimensional real vectors is represented as Rn.
The sets of all nonnegative and positive real vectors are denoted as Rn

+ and Rn
++, respectively.

Inequalities are meant to be componentwise: given x, y ∈ Rn
+, then x ≥ y (x − y ∈ Rn) implies

xi ≥ yi, i = 1, 2, ..., n. Accordingly, x > y (x − y ∈ Rn
++) implies xi > yi, i = 1, 2, ..., n.

The standard inner product in Rn is denoted as 〈x, y〉. If f : Rn → Rm is defined on Ω, then
f(Ω) := {f(x) : x ∈ Ω}. The symbol := means equal by definition.

2. The Continuous Reformulation

A nontraditional approach for solving discrete programming problems (in particular, the
0–1 knapsack problem) can be that of transforming the problem into an equivalent continuous prob-
lem. These solution methods are based on different characterizations or reformulations of the con-
sidered problems in a continuous space and involve analytic and algebraic techniques (see Pardalos
and Rosen 1987, Leyffer 1993, Horst and Tuy 1996, Pardalos 1996, Du and Pardalos 1997, Parda-
los 1998, Horst et al. 2000, Pardalos et al. 2006, Mangasarian 2009, Murray and Ng 2010). In
particular, Pardalos (1996) and Pardalos et al. (2006) give a brief overview of some continuous
approaches to some discrete optimization problems.

In this section, a continuous reformulation for solving a given 0–1 knapsack problem
is considered; we show that this continuous reformulation has the same global maximizer of the
original 0–1 knapsack problem. Hence, the optimal solution of the original 0–1 knapsack problem



can be obtained by solving this specific continuous problem. Consider the 0–1 knapsack problem
(KP), formulated as follow:

KP

∣∣∣∣∣∣∣∣∣∣∣∣

maximize
p∑
i=1

uixi

subject to
p∑
i=1

wixi ≤ C

xi ∈ {0, 1}, i = 1, 2, . . . , p.

As noted knapsack problems are generally NP–hard and yet there are few successful so-
lution methods. Dropping the binary variables constraints, xi ∈ {0, 1}, i = 1, 2, . . . , p, will make
the computational effort to increase slowly with the size of the problem. Perhaps, one of the most
important properties of the 0–1 knapsack problem (the knapsack problems, in general) is that the
relaxed problem (continuous version of the problem), where the binary variables constraints are
relaxed to xi ∈ [0, 1], i = 1, 2, . . . , p, is so fast to solve.

In Dantzig (1957), a solution method is proposed for solving the continuous 0–1 knapsack
problem. The proposed technique by Dantzig is based on the ordering the items according to their
profit–to–weight ratio and using a greedy algorithm for filling the knapsack. It can be seen that,
having solved the continuous 0–1 knapsack problem, a few decision variables may be changed in
order to obtain the optimal integer solution (Pisinger, 1995). Moreover, the original 0–1 knapsack
problem has a very large number of local minimizers, in general, that it makes the continuous
problem less complicated to work on, if there is an efficient solution method available to solve it
(Murray and Ng, 2010). For these reasons, and, among others, it would seen attractive if the 0–1
knapsack problem would be replaced by an equivalent relaxed problem in continuous variables.

Based on these observations, initially, the original 0–1 knapsack problem must be relaxed.
Perhaps, the most simple way to do it is to add constraints xi ∈ [0, 1], i = 1, 2, . . . , n and
xi(xi − 1) = 0, i = 1, 2, . . . , p. Clearly, xi = 0 or xi = 1 for i = 1, 2, . . . , p. The problem is that
a nonconvex optimization problems may have local optimal solutions that are not global optimal
solutions. Another way to do it is to add the penalty term

∑
i xi(1 − xi) to the objective function

with an arbitrarily large positive penalty parameter M > 0. The continuous 0–1 knapsack problem
(CKP) then becomes

CKP

∣∣∣∣∣∣∣∣∣∣∣∣

maximize
p∑
i=1

uixi −M
p∑
i=1

xi(1− xi)

subject to
p∑
i=1

wixi ≤ C

xi ∈ [0, 1], i = 1, 2, . . . , np.

Problem (CKP) is a maximization problem, therefore, in the optimality the penalty term∑
i xi(1 − xi) must be zero since the penalty parameter M is an arbitrarily large positive num-

ber. This observation together with the constraint xi ∈ [0, 1], i = 1, 2, . . . , p imply that xi ∈
{0, 1}, i = 1, 2, . . . , p. Hence, we have the following equivalence theorem.

Theorem 2.1 (Equivalence Theorem) (KP) is equivalent to (CKP) where M is an arbitrarily
large positive number.

Since each xi(1− xi) is concave in xi, i = 1, 2, . . . , p, the objective function in (CKP)
is convex in x1, x2, . . . , xp. It is known that the maximum of a convex function over a compact
convex polyhedral set is attained at one of its finitely many extreme points (Horst et al. 2000). It



also can be seen that the set of the feasible solutions of (CKP) in standard form is convex and every
integer feasible solution is an extreme point of this set.

It would seen that the vertices enumeration approaches can be used and applied but the
computational complexity of problems relating to the enumeration of all the vertices of a convex
polyhedral set defined by linear inequalities is superpolynomial (Dyer, 1983), which it leads to other
interesting approaches that involve solution methods to generalized multiplicative programming
problems, first introduced in Konno at al. (1994). Instead of the convex maximization problem
(CKP), we consider the following equivalent concave minimization problem

ECKP

∣∣∣∣∣∣∣∣∣∣∣∣

minimize
(
−

p∑
i=1

uixi + α
)

+M

p∑
i=1

xi(1− xi)

subject to
p∑
i=1

wixi ≤ C

xi ∈ [0, 1], i = 1, 2, . . . , p.

where α ∈ R++ is such that (−
∑p

i=1 uixi+α) > 0. It is well known that problem (ECKP) has the
same solutions as (CKP), but it is better conditioned since all functions involved are positive over
its constraint set.

In the next section, we propose an outcome space approach for globally solving the equiv-
alent convex generalized multiplicative programming problem (ECKP), which involves the mini-
mization of a finite sum of products of convex functions over a nonempty compact convex polyhe-
dral set. It is shown that this nonconvex minimization problem can be reformulated as an indefinite
quadratic problem with infinitely many linear inequality constraints.

3. Outcome Space Formulation of (ECKP)

This section is concerned with the convex generalized multiplicative programming prob-
lem (ECKP), a special class of problems of minimizing an arbitrary finite sum of products of two
convex functions over a compact convex set, a problem originally proposed in Konno et al. (1994).
Consider the multiplicative programming problem

min
x∈Ω

v(x) = min
x∈Ω

f1(x) +
p∑
i=1

f2i(x)f2i+1(x), (3.1)

where fi : Rn → R, i = 1, 2, ...,m, m = 2p + 1, are convex functions defined on Rn. It is also
assumed that Ω is a nonempty compact convex set and that f1, f2, ..., fm are positive functions over
Ω.

The product of any two convex positive functions is not necessarily convex or quasi–
convex, and, therefore, problem (3.1) may have local optimal solutions that are not global optimal
solutions. In nonconvex global optimization, problem (3.1) has been referred as the generalized
convex multiplicative problem. Important problems in engineering, financial optimization, mi-
croeconomics, geometric design and economics, among others, rely on mathematical optimization
problems of the form (3.1). See (Ashtiani, 2012) for a detailed discussion about generalized multi-
plicative programming problems.

In the last decade, many efficient solution algorithms have been proposed for globally
solving the (generalized) multiplicative programming problems class and its several particular cases.
A number of multiplicative programming approaches for solving this problem in the outcome space
have been proposed. In (Konno et al., 1994) the problem is projected in the outcome space, where
the problem has onlym variables, and then solved by an outer approximation algorithm. In (Oliveira
and Ferreira, 2010) the problem is projected in the outcome space following the ideas introduced



in (Oliveira and Ferreira, 2008), reformulated as an indefinite quadratic problem with infinitely
many linear inequality constraints, and then solved by an efficient relaxation–constraint enumera-
tion algorithm. In (Ashtiani and Ferreira, 2011) the authors address the closely related problem of
maximizing the same objective function, but with fi, i = 1, 2, . . . ,m concave, rather than convex
positive functions over Ω. More recently, a number of branch–and–bound techniques have also
been proposed (in particular, Ashtiani (2012) gives an overview of some these approaches). In
fact, generalized convex and generalized concave multiplicative problems are found in the fields of
quadratic, bilinear and linear zero–one optimization.

The outcome space approach for solving problem (ECKP) is inspired in a similar approach
recently introduced in (Oliveira and Ferreira, 2010) and (Ashtiani and Ferreira, 2011) for solving
the classical convex generalized multiplicative problems (3.1). Let Ω the constraint set of (ECKP)
and define f1 := (−

∑p
i=1 uixi + α), f2i := xi and f2i+1 := (1 − xi) for i = 1, 2, . . . , p. The

objective function in (ECKP) can be written as the composition u(f(x)), where u : Rm → R,
m = 2p+ 1, is defined by

u(y) := y1 +M

p∑
i=1

y2iy2i+1.

The function u can be viewed as a particular aggregating function for the problem of
minimizing the vector-valued objective f := (f1,Mf2, f3, . . . ,Mf2p, f2p+1) over Ω (Yu, 1985).
The image of Ω under f , Y := f(Ω), is the outcome space associated with problem (ECKP).
Since f is positive over Ω, it follows that u is strictly increasing over Y and any optimal solution of
(ECKP) is Pareto–optimal or efficient (Yu, 1985). It is known from the multiobjective programming
literature that if x ∈ Ω is an efficient solution of (ECKP), then there exists w ∈ Rm

+ (different
from what was considered in Section 1–2) such that x is also an optimal solution of the convex
programming problem

min
x∈Ω
〈w, f(x)〉. (3.2)

Conversely, if x(w) is any optimal solution of (3.2), then x(w) is efficient for (ECKP) if
w ∈ Rm

++. By defining

W :=
{
w ∈ Rm

+ :
m∑
i=1

wi = 1
}
,

the efficient set of (ECKP), denoted as effi(Ω), can be completely generated by solving (3.2) over
W . The outcome space formulation of problem (ECKP) is simply

min
y∈Y

u(y) := y1 +M

p∑
i=1

y2iy2i+1. (3.3)

The solution approaches which aim at solving problem (ECKP) by solving its equivalent
problem (3.3) in the outcome space basically differ in the way of representing the (generally) non-
convex set Y . In (Oliveira and Ferreira, 2010) a suitable representation is derived with basis on the
following convex analysis result. See (Lasdon, 1970) for a proof.

Lemma 3.1 Given y ∈ Rm, the inequality f(x) ≤ y has a solution x ∈ Ω if and only if y satisfies

min
x∈Ω
〈w, f(x)〉 ≤ 〈w, y〉 for all w ∈ W.

or, equivalently,
max
x∈Ω
〈w, f(x)− y〉 ≥ 0 for all w ∈ W. (3.4)

The main theoretical result of this paper consists in showing that problem (3.3) admits an
equivalent formulation with a convex feasible region.



Theorem 3.2 Let y? be an optimal solution of problem

min
y∈F

u(y) := y1 +M

p∑
i=1

y2iy2i+1 (3.5)

where F := Y + Rm
+ . Then y? is also an optimal solution of (3.3). Conversely, if y? solves (3.3),

then y? also solves (3.5).

Proof. Since for any x ∈ Ω, y = f(x) is feasible for (3.5), the feasible set of (3.5) contains the
feasible set of (3.3). Therefore, the optimal value of (3.5) is a upper bound for the optimal value of
(3.3). If y? solves (3.5), then

min
x∈Ω
〈w, f(x)− y〉 ≤ 0, for all w ∈ W,

and by Lemma 3.1 there exists x? ∈ Ω such that f(x?) ≤ y?. Actually, f(x?) = y?. Otherwise,
the feasibility of f(x?) for (3.5) and the positivity of u over F would contradict the optimality of
y?. Since f(x?) is feasible for (3.3), we conclude that y? also solves (3.3). The converse statement
is proved by using similar arguments. �

4. Relaxation Procedure

Problem (3.5) has a small number of variables, but infinitely many linear inequality con-
straints. An adequate approach for solving (3.5) is relaxation. The relaxation algorithm evolves
by determining yk, a global maximizer of u over an outer approximation Fk of F described by a
subset of the inequality constraints (3.4), and then appending to Fk only the inequality constraint
most violated by yk. The most violated constraint is found by computing

θ(y) := max
w∈W

φy(w), (4.1)

where
φy(w) := min

x∈Ω
〈w, f(x)− y〉. (4.2)

Maximin problems as the one described by (4.1) and (4.2) arise frequently in optimization,
engineering design, optimal control, microeconomic and game theory, among other areas.

Lemma 4.1 y ∈ Rm satisfies the inequality system (3.4) if and only if θ(y) ≤ 0.

Proof. If y ∈ Rm satisfies the inequality system (3.4), then minx∈Ω 〈w, f(x) − y〉 ≤ 0 for all
w ∈ W , implying that θ(y) ≤ 0. Conversely, if y ∈ Rm does not satisfy the inequality system
(3.4), then minx∈Ω 〈w, f(x)− y〉 > 0 for some w ∈ W , implying that θ(y) > 0. �

Some useful properties of θ and φ are discussed in Oliveira and Ferreira (2008, 2010).
The following geometric property of θ is proved in Oliveira and Ferreira (2010).

Theorem 4.2 For any y ∈ Rm, the value θ(y) is the optimal value of the following convex pro-
gramming problem

∣∣∣∣∣∣∣
minimize

x,σ
σ

subject to f(x) ≤ σe+ y
x ∈ Ω, σ ∈ R.

(4.3)



where σ ∈ R and e ∈ Rm is the vector of ones.
If x? and w? are the primal and dual optimal solutions of problem (4.3), and w? ∈ Rm

++,
then the inequality constraint in (4.3) is active at x?. The case θ(y) > 0 is more relevant for
the analysis because the relaxation algorithm generates a sequence of infeasible points y /∈ F
converging to an optimal solution of (3.5) (see Lemma 4.1). In this case θ(y) is numerically equal
to the infinity norm between y and F . Some other useful properties of θ and φ are listed in Oliveira
and Ferreira (2010).

Consider the initial polytope

F0 :=
{
y ∈ Rm : 0 < y ≤ y ≤ y

}
, (4.4)

where y and y are defined as y
i

:= minx∈Ω fi(x) > 0, yi := maxx∈Ω fi(x), i = 1, 2, ...,m. The
computations of y and y demand m convex and m concave minimizations. While the computation
of y is relatively inexpensive, the computation of y requires the solution of m nonconvex problems.
However, the usual practice of setting the components of y sufficiently large has been successfully
applied. It is readily seen that the minimization of u over F0 is achieved at y0 = y. The utopian
point y0 rarely satisfies the inequality system (3.4), that is, θ(y0) > 0, in general. By denoting as
w0 ∈ W the corresponding maximizer in (4.1), one concludes that y0 is not in (most violates) the
supporting negative half–space

H0
+ =

{
y ∈ Rm : 〈w0, y〉 ≥ 〈w0, f(x(w0))〉

}
. (4.5)

An improved outer approximation for F is F1 = H0
+ ∩ F0. If y1 that minimizes u over

F1 is also such that θ(y1) > 0, then a new supporting positive half–space H1
+ is determined, the

feasible region of (3.5) is better approximated by F2 = F1 ∩ H1
+, and the process repeated. At an

arbitrary iteration k of the algorithm, the following relaxed program is solved:

min
y∈Fk

u(y). (4.6)

4.1. A Relaxation Branch–and–Bound Algorithm
Problem (4.6) is actually a linearly constrained quadratic problem of the form

PFk

∣∣∣∣∣∣∣∣∣
minimize u(y) := y1 +M

p∑
i=1

y2iy2i+1

subject to A(k)y ≥ b(k),
y ≤ y ≤ y,

where A(k) ∈ Rk×m, b(k) ∈ Rk, y ∈ Rm and y ∈ Rm characterize the matrix representation of
problem (4.6). The objective function in (PFk ) can be rewritten as

u(y) =
1
2
yTQy + cT y, (4.7)

where the characteristic equation of Q,

det(λI −Q) = λ (λ2 −M2) · · · (λ2 −M2)︸ ︷︷ ︸
p times

= 0,

has exactly p negative roots (eigenvalues) equal to −M , p positive roots equal to M , and one
root equal to zero. This clearly implies the indefiniteness of Q, that is, (PFk ) is an indefinite
quadratic programming problem. However, the characteristics of (PFk ) favour the application of



the constraint enumeration method. Since Q has p positive eigenvalues, it follows that at least
p constraints will be active at any local (global) solution of (PFk ), an optimal solution of (PFk )
occurs at the boundary of Fk and can be found by constraint enumeration (Horst et al. 2002).
In this paper, global minimizers of (PFk ) are obtained as the limit of the optimal solutions of a
sequence of special programs solved by using a rectangular branch–and–bound procedure.

Thus, the relaxation algorithm for globally solving the generalized multiplicative problem
(ECKP) assumes the structure below.

Basic Algorithm

Step 0: Find F0 and set k := 0;

Step 1: Solve the generalized multiplicative problem (PFk ) using the rectangular branch–and–
bound algorithm proposed as follow, obtaining yk;

Step 2: Find θ(yk) and wk by solving problem (4.1)–(4.2). If θ(yk) < ε, where ε > 0 is a small
tolerance, stop: yk and x(wk) are ε–optimal solutions of (3.3) and (ECKP), respectively.
Otherwise, define

Fk+1 := {y ∈ Fk : 〈wk, y〉 ≥ 〈wk, f(x(wk))〉},

set k := k + 1 and return to Step 1.

The infinite and finite convergence properties of Algorithm 1 are analogous to those ex-
hibited by the algorithm derived in (Oliveira and Ferreira, 2010) for generalized multiplicative
programming.

4.1.1. A Rectangular Branch–and–Bound Algorithm – Solving (PFk)

The relaxation algorithm evolves by determining yk, a global minimizer u(y) over an
outer approximationFk ofF , and then appending toFk only the inequality constraint most violated
by yk.

Lower Bound

Let R denote either the initial rectangle F0 :=
[
y, y
]
, or a subrectangle of it. In

each subrectangle, any feasible point of (PFk ) provides an upper bound for the optimal value of
(PFk ). In Adjiman et al. (1995), the authors discuss a convex lower bound for the bilinear term
y2iy2i+1 inside a rectangular region [yL2i, y

U
2i] × [yL2i+1, y

U
2i+1], where yL2i, y

U
2i, y

L
2i+1 and yU2i+1 are

the lower and upper bounds on y2i and y2i+1, respectively. Bilinear terms of the form y2iy2i+1 are
underestimated by introducing a new variable λi and two inequalities

y2iy2i+1 ≥ max
{
yL2iy2i+1 + yL2i+1y2i − yL2iyL2i+1,

yU2iy2i+1 + yU2i+1y2i − yU2iyU2i+1

}
,

(4.8)

which depend on the bounds on y2i and y2i+1. Then, a lower bound for the optimal value of (PFk )
can be obtained by solving the following convex programming problem:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
y,λ

λ1 +M

p∑
i=1

λi+1

subject to A(k)y ≥ b(k)

λ1 ≥ y1,

λi+1 ≥ yL2iy2i+1 + yL2i+1y2i − yL2iyL2i+1, i = 1, 2, . . . , p,
λi+1 ≥ yU2iy2i+1 + yU2i+1y2i − yU2iyU2i+1, i = 1, 2, . . . , p,

y ∈ R,

(4.9)



where yL2i, y
U
2i, y

L
2i+1 and yU2i+1 (i = 1, 2, . . . , p) are the bounds on the variables y2i and y2i+1 in

some subrectangle R. The rectangular branch–and–bound algorithm for globally solving the k-th
outer approximation of the generalized multiplicative problem (ECKP) assumes the structure below.

Rectangular Branch–and–Bound Algorithm

Step 0: Find F0, let some accuracy tolerance εBB > 0 and the iteration counter k = 0.

Step 1: Define L0 := {F0}, and let L0 and U0 be a lower and an upper bound for the optimal
value of problem (PFk ), which are found by solving problem (4.9) withR = F0.

Step 2: While Uk − Lk > εBB,
i) ChooseR ∈ Lk such that the lower bound overR is equal to Lk;
ii) SplitR along one of its longest edges intoRI andRII ;
iii) Define

Lk+1 := (Lk − {R}) ∪ {RI ,RII},

iv) Compute lower and upper bounds for the optimal values of problems (4.9) with
Ry = RIy and (4.9) with Ry = RIIy , set Lk+1 and Uk+1 as the minima lower and upper bounds
over all subrectanglesRy ∈ Lk+1, and k := k + 1.

A similar convergence results for rectangular branch–and–bound algorithms can be found
in (Benson, 2002).

5. Computational Experiments

The basic and the retangular branch–and–bound algorithms, which solve outer approx-
imations of generalized multiplicative problems were coded in MATLAB (V. 7.0.1)/Optimization
Toolbox (V. 4) and run on a personal Pentium IV system, 2.00 GHz, 2048MB RAM. The tolerances
for the ε–convergences of algorithm was fixed at 10−3 while the tolerance for the convergence of
the branch–and–bound algorithm was fixed at 0.05. In order to illustrate the convergence of the
global optimization algorithms proposed, the following examples have been considered.

Example 5.1 Let p = 5 (the number of items), w = [92 29 37 37 77] (the weight vector) and
u = [82 26 42 36 70] (the utility vector). The solutions, in the term of the knapsack capacity, C,
are reported in Table 1.

Tabela 1: Example 5.1.
C Optimal Solution Optimal Value

100 (1,0,0,0,0) 82
155 (0,0,1,1,1) 148
183 (0,1,1,1,1) 174
225 (1,0,1,0,1) 194
270 (1,0,1,1,1) 230

Example 5.2 Let p = 8 (the number of items), w = [15 28 32 21 25 18 20 70] (the weight vector)
and u = [82 26 42 36 70 10 52 17] (the utility vector). The solutions, in the term of the knapsack
capacity, C, are reported in Table 2.



Tabela 2: Example 5.2.
C Optimal Solution Optimal Value
52 (1,0,0,0,1,0,0,0) 155
65 (1,0,0,0,1,0,1,0) 204
100 (1,0,0,1,1,1,1,0) 250
132 (1,0,1,1,1,1,1,0) 292
145 (1,1,1,1,1,0,1,0) 308
220 (1,1,1,1,1,0,1,1) 325
228 (1,1,1,1,1,0,1,1) 325

6. Conclusions

In this work we proposed a continuous optimization approach for solving the 0–1 knap-
sack problem. In the continuous space, the problem was reformulated as a convex generalized
multiplicative programming problem. By using convex analysis results, the problem was refor-
mulated in the outcome space as an optimization problem with infinitely many linear inequality
constraints, and then solved through a relaxation branch–and–bound algorithm. Experimental re-
sults have attested the viability and efficiency of the proposed global optimization algorithm, which
is, in addition, easily programmed through standard optimization packages.

The extension of the proposed algorithm for solving the related integer optimization prob-
lems, including other classic problems of the family of knapsack problems, is under current inves-
tigation by the authors.
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